

Energy efficiency and copper: Creating leverage for decarbonisation in industry and SMEs

Diedert Debusscher EUSEW 11 Oct 2021

European Copper Institute

Part of

International Copper Association Copper Alliance

Leading advocate of the copper industry

Non-profit organization

- Uniting the copper industry and its partners
- Positively contribute to UN Sustainable Development Goals
- Support markets for copper

Energy intensity of copper production -60% since 1990*

Best available technologies for energy efficiency in place

- Increased use of flash smelting technology
- New and modernised furnaces
- Renovated electrical equipment
- Efficient drying technologies
- Energy Management Systems (ISO 50001 or equivalent)

* Smelting and Refining industry

Source: Copper's Contribution to A Low-Carbon Future, pp 18 (November 2014) - https://copperalliance.eu/benefits-of-copper/sustainable-development/low-carbon

Low carbon footprint

Cu

Reduced carbon footprint

- High input of recycled materials (~ 43% of copper produced in EU is from secondary sources)
- Lower emissions from purchased electricity Recovered residual heat, on site renewables

Limitations to further reduce carbon footprint

- · Higher energy intensity for material processing due to
 - Decreasing quality of raw materials
 - Increasing material efficiency, recycling requirements, environmental protection systems (electricity)
- Copper production is electro-intensive
 - ~75% of CO2 emissions are indirect (Scope 2 and 3)

* Smelting and Refining industry

Source: Copper's Contribution to A Low-Carbon Future, pp 18 (November 2014) - https://copperalliance.eu/benefits-of-copper/sustainable-development/low-carbon

Innovation – Examples in extraction and manufacturing processes

ENERGY SAVINGS

Aurubis

Hafencity East supplied with industrial residual heat from Aurubis, Hamburg CIRCULAR ECONOMY Adaptation to new material feeds

Implementation of bismuth and antimony removal + Nickel recovery

Electrification of extractive processes

Implementation of data science methods + process optimisation

TRANSPORT Offsetting GHG

Electrification of mining trucks

Water barges to replace trucks

Copper is a key material in the energy transition

Сп

Energy savings in motors by using more copper to reduce losses

		Type 1		Type 2	Type 3			
a - a	Materials							
	Aluminium	Kg	3,5	3,5	4			
22 kW	asing Copper	Kg	8,8	12,9	13,9			
	Electrical steel	Kg	108	108	108			
	Parameters	1						
+1 kg Cu -> - 3 Tons CO2	Rating	Kw	22	22	22			
	asing Efficiency	%	89.5	91.8	92.6			
Enic	Lifetime	Years	20	20	20			
Eco-design analysis	Load	%	50	50	50			
	Annual operation	Hours	4380	4380	4380			
	Environmen	Environmental balance						
Manufacturing Utilisation End of Life	Primary Energy	GJ	1233	940	841			
	co2	Tons	56	43 -	38			
Carbon intensity of copper production is ~4kgCO2/kgCu, hence the environmental payback is a factor 750, while at end of life the kg copper can be recycled for the next application	Perme			No. 10				

Energy savings in Transformers by using more copper to reduce losses

	Materials		, cc'	C-Amorphous	
1.6 MVA	Mech steel	Kg Ka	850 505	725	887 1225
1.6 MVA Copper	Electrical steel	Kg	1100	1200	1550
	Parameters		111	24	
+1 kg Cu -> - 0.5 Ton CO2	Rating	MVA	1.6	1.6	1.6
Efficiency	Load Losses	kW	17	14	14
	No-Load Losses	kW	2.6	1.7	0.4
	Lifetime	Years	30	30	30
Eco-design analysis	Load	%	50	50	50
	Annual operation	Hours	8760	8760	8760
	Environmental balance				
Manufacturing Utilisation End of Life	Primary Energy	GJ	19750	15061	11439
Decreasing CO2	C02	Tons	897	683	522
Carbon intensity of copper production is ~4kgCO2/kgCu, hence the environmental payback is a factor 750, while at end of life the kg copper can be recycled for the next application					

Copper has a low contribution to carbon emissions but a high contribution to decarbonisation

Cu

Scope 3 upstream: based on world average for cathode production Source: <u>http://copperalliance.org.uk/uploads/2018/01/the-env-profile-of-copper-products_lifecycle.pdf</u>

ECI's actively promotes and supports energy efficiency in industry

Energy management practices in SMEs: online survey (2021)

Does your company implement energy efficiency measures within a systematic approach?

Not really

- Ad hoc, no systematic approach
- Systematic approach but no EMS
- Energy Management System

https://copper.fyi/EnMg

Energy management practices in SMEs: online survey (2021)

What is the main resistance in your organization towards implementing Energy Management System?

Energy management practices in SMEs: online survey (2021)

What info/training is missing on energy efficiency measures and in particular Energy Management Systems?

ECI activities to support SMEs and promote energy efficiency in industry

Energy Management in SMEs

Application Note to implement Energy Management (like ISO50001 standard) in a simplified and pragmatic way, tailored to the type and size of the SME Frequently Asked Questions

Online helpdesk on the implementation of Energy Management practices

Good Practice Guide

60+ Application Notes

- more practical
 guidance than
 informative articles
- **lighter to read** than technical guides

» copper.fyi/EnMg

<u>» lpqi.org</u>

Accelerated motor replacement (1/2)

Motors in industry &

tertiary are used far

beyond their expected

lifetime (significant % of

operating IE1 and below

still in service).

Accelerated motor replacement (2/2)

Partnerships

Energy Efficiency Directive (recast): ECI's position

Cu

- EED recast proposal reinforces the role of energy efficiency in the energy transition (EE1st in all sectors)
- Provisions include the shift towards better energy efficiency monitoring, the wider scope for energy management practices, and the reinforcement of the quality and follow-up of energy audits.
- Need focus on those economic sectors and application domains with vast untapped cost-effective energy efficiency improvements:
 - In the segment of small and medium-sized companies (SMEs);
 - In the heating and cooling sector, eg. via the recovery of heat;
 - At the systems level, such as indoor electrical installations (2% of electricity generated is lost in indoor electrical installations due to improper cable sizing for heavily loaded circuits)

Energy Efficiency Directive (recast): ECI's position

- Improve the quality of energy audits and the level of adoption of cost-effective recommendations from energy audits, without making such implementation mandatory
- Welcome the strengthened provisions on promoting energy management systems, however:
 - industry (especially SMEs) should be supported in the implementation;
 - certification should not be a barrier for the uptake;
 - simplified and pragmatic approaches that are tailored to the type and size of the company should be considered

Thank you

diedert.debusscher@copperalliance.org

Contributors Anna-Maria Karjalainen Diedert Debusscher Diego Carvajal Fernando Nuño Hans De Keulenaer Mukund Bhagwat

