

Linking multiple benefits and energy audits in SMEs

 \bigotimes

Introduction - Objective

SMEs are the heart of the European economy. There are 23 million EU-27 SMEs (99.8% all companies, employing 83 million people (64% of total employment) and provide 52% of value added.

The term 'multiple benefits' aims to capture a reality that is often overlooked: investment in energy efficiency can provide many different benefits to many different stakeholders.

Analysing the multiple benefits of energy efficiency in energy audits could be an effective approach to engage non-energy intensive SMEs, which are often unaware and uninterested. The challenge is to understand the relationship between EPIAs' characteristics and its adoption.

Current status³

21 policies and programmes analysed in 9 European countries

Perception mapping⁴

Different perceptions of importance of multiple benefits from Organisations (174) and SMEs (116) in the ongoing project survey

Multiple benefits indicators ⁵

- Quantifying multiple benefits is a difficult task, despite their potential impact on the financial metrics of energy efficiency investments

- Obligation of implementation of EPIAs included in the audit depends on the territory (national or local), being more frequently mandatory in national than in regional programmes.
- Obligation of the implementation EPIAs is correlated with stringent requirements of energy audits.
- The evaluation of multiple benefits is usually excluded from the current policies.

Geographical

Quality Audits

#	Organisations	ions		SMEs	
1	Energy costs	94%		Energy costs	86%
2	Process overall efficiency	79 %		Greenhouse gas emissions	81%
3	Greenhouse gas emissions	78%	$\left \right $	Company's image	73%
4	Renewable energy sources	71%	V	Renewable energy sources	70%
5	O&M costs	70%	Λ	O&M costs	64%
6	Company's image	69 %	/ /	Air quality	63 %
7	Innovative solutions	63%		Process overall efficiency	56%
8	Technological competitive- ness	62%		Innovative solutions	54%
9	Air quality	59%	/	Technological competitive- ness	53%
10	Raw materials consumption	48%		Raw materials consumption	53%
11	Product quality	36%		Water quality	45%
12	Water quality	34%		Product quality	28%

Organisations

60% 50% 40%

- Energy efficiency is usually underestimated when considering only direct economic analysis
- Mapping and evaluation of indicators should be based on a mixture of experience, observations, calculations, and/or estimations
- Raw materials and water data integration in energy audits can drive a better understanding and implementation of EPIAs

Group	Indicator			
Water Consumption	Total water consumption			
	Water consumption per GVA			
Water Intensity	Water specific consumption			
	Water consumption per employee			
Water Sources	Share of alternative water sources used			
water Sources	Share of wastewater treated and reused			
	Share of water costs in the total costs incurred			
Water Cost	Water specific cost			
	Economic productivity of water			
	Materials specific consumption			
Material Use	Waste valorisation rate			
	Share of subproducts in production process rate			
Woton Enormy Novice	Energy specific cost of the hydraulic circuits			
water-Energy Nexus	Water specific cost of the hydraulic circuits			

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No 893924.

LEAP4SME aims to support countries in establishing or improving effective policies for SMEs to undergo energy audits and implement cost-effective, recommended energy-saving measures through identifying the barriers for unlocking energy efficiency measures and proposing effective solutions to realise both energy and non-energy benefits.

🕑 @LEAP4SME 🛛 in LEAP4SME 🏻 🌐 leap4sme.eu